Mini Cart

  • No products in the cart.

IB Mathematics Core Topics SL - Textbook (NYP Due July 2019)

$39.00

Publisher: Haese Mathematics ISBN-13: 9781925489552

Author: Michael Haese; Mark Humphries; Chris Sangwin; Ngoc Vo

Format: Paperback

Isbn 10: 1925489558

Language: English

Release date: 04/30/2019

Year: 2019

Description

Mathematics: Core topics SL has been written for the IB Diploma Programme courses Mathematics: analysis and approaches SL, and Mathematics: applications and interpretation SL, for first teaching in August 2019, and first assessment in May 2021.

The book contains the content that is common to both courses. This material can all be taught first, giving the potential to teach all the SL students together from this book at the start of the course.

A set of background knowledge chapters is accessible online for those who want to ensure that they have the prerequisite levels of understanding for the courses.

The material is presented in a clear, easy-to-follow style, free from unnecessary distractions, while effort has been made to contextualise questions so that students can relate concepts to everyday use.

Each chapter begins with an Opening Problem, offering an insight into the application of the mathematics that will be studied in the chapter. Important information and key notes are highlighted, while worked examples provide step-by-step instructions with concise and relevant explanations. Discussions, Activities, Investigations, and Research exercises are used throughout the chapters to develop understanding, problem solving, and reasoning.

Discussion topics for Theory of Knowledge are included throughout the book. There is also guidance on writing the Mathematical Exploration, as well as examples of Mathematical Explorations accessible online.

This is the first of two books students will require for the completion of their SL Mathematics course. Upon the completion of this book, students progress to the particular SL textbook for their course: either Mathematics: analysis and approaches SL, or Mathematics: applications and interpretation SL. This is expected to occur approximately 6-7 months into the two-year course.

Table of Contents

Mathematics: Core topics SL

1          STRAIGHT LINES    

           A          The equation of a line         

           B          Graphing a straight line      

           C          Perpendicular bisectors      

           D         Simultaneous equations      

           E          Problem solving with simultaneous equations     

2          SETS AND VENN DIAGRAMS         

           A          Sets    

           B          Intersection and union        

           C          Complement of a set

           D         Special number sets

           E          Interval notation      

           F          Venn diagrams         

           G          Venn diagram regions         

           H         Problem solving with Venn diagrams        

3          SURDS AND EXPONENTS   

           A          Surds and other radicals     

           B          Division by surds     

           C          Exponents     

           D         Laws of exponents   

           E          Scientific notation    

4          EQUATIONS 

           A          Equations of the form x^2 = kx

2

=k      

           B          Power equations      

           C          Equations in factored form 

           D         Quadratic equations

           E          Solving polynomial equations using technology   

           F          Solving other equations using technology

5          SEQUENCES AND SERIES   

           A          Number sequences  

           B          Arithmetic sequences          

           C          Geometric sequences           

           D         Growth and decay    

           E          Compound interest  

           F          Depreciation 

           G          Using technology for financial models       

           H         Series 

           I           Arithmetic series      

           J           Finite geometric series        

           K         Infinite geometric series     

6          MEASUREMENT      

           A          Circles, arcs, and sectors      

           B          Surface area 

           C          Volume          

           D         Capacity        

7          RIGHT ANGLED TRIANGLE TRIGONOMETRY  

           A          The trigonometric ratios     

           B          Finding side lengths

           C          Finding angles          

           D         Right angles in geometric figures   

           E          Problem solving with trigonometry           

           F          True bearings           

           G          The angle between a line and a plane      

8          NON-RIGHT ANGLED TRIANGLE TRIGONOMETRY     

           A          The unit circle          

           B          The area of a triangle          

           C          The cosine rule         

           D         The sine rule

           E          Problem solving with trigonometry           

           F          The ambiguous case of the sine rule         

9          POINTS IN SPACE    

           A          Points in space         

           B          Measurement           

           C          Trigonometry           

10       PROBABILITY         

           A          Experimental probability    

           B          Two-way tables        

           C          Sample space and events    

           D         Theoretical probability        

           E          The addition law of probability      

           F          Independent events

           G          Dependent events   

           H         Conditional probability       

           I           Formal definition of independence           

           J           Making predictions using probability        

11       SAMPLING AND DATA       

           A          Errors in sampling   

           B          Sampling methods   

           C          Types of data

           D         Simple discrete data

           E          Grouped discrete data         

           F          Continuous data       

12       STATISTICS 

           A          Measuring the centre of data         

           B          Choosing the appropriate measure           

           C          Using frequency tables       

           D         Grouped data           

           E          Measuring the spread of data        

           F          Box and whisker diagrams 

           G          Outliers         

           H         Parallel box and whisker diagrams           

           I           Cumulative frequency graphs        

           J           Variance and standard deThis product has been developed independently from and is not endorsed by the International Baccalaureate Organization.  International Baccalaureate, Baccalaureát International, Bachillerato Internacional and IB are registered trademarks owned by the International Baccalaureate Organization.

We use cookies to improve your experience on our website. By browsing this website, you agree to our use of cookies.